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The thermal conductivity κ of the iron-arsenide superconductor Ba(Fe1−xCox)2As2 was measured
down to 50 mK for a heat current parallel (κc) and perpendicular (κa) to the tetragonal c axis, for
seven Co concentrations from underdoped to overdoped regions of the phase diagram (0.038 ≤ x ≤
0.127). A residual linear term κc0/T is observed in the T → 0 limit when the current is along
the c axis, revealing the presence of nodes in the gap. Because the nodes appear as x moves away
from the concentration of maximal Tc, they must be accidental, not imposed by symmetry, and
are therefore compatible with an s± state, for example. The fact that the in-plane residual linear
term κa0/T is negligible at all x implies that the nodes are located in regions of the Fermi surface
that contribute strongly to c-axis conduction and very little to in-plane conduction. Application of
a moderate magnetic field (e.g. Hc2/4) excites quasiparticles that conduct heat along the a axis
just as well as the nodal quasiparticles conduct along the c axis. This shows that the gap must be
very small (but non-zero) in regions of the Fermi surface which contribute significantly to in-plane
conduction. These findings can be understood in terms of a strong k dependence of the gap ∆(k)
which produces nodes on a Fermi surface sheet with pronounced c-axis dispersion and deep minima
on the remaining, quasi-two-dimensional sheets.

PACS numbers: 74.25.Fy, 74.20.Rp,74.70.Dd

I. INTRODUCTION

The discovery of superconductivity in iron arsenides,1

with transition temperatures exceeding 50 K,2 breaks
the monopoly of cuprates as the only family of high-
temperature superconductors, and revives the question
of the pairing mechanism. Because the mechanism is
intimately related to the symmetry of the order param-
eter, which is in turn related to the k dependence of the
gap function ∆(k), it is important to determine the gap
structure in the iron-based superconductors, just as it
was crucial to establish the d-wave symmetry of the gap
in cuprate superconductors. The gap structure of iron-
based superconductors has been the subject of numerous
studies (for recent reviews, see Refs. 3,4). Here, we focus
on the material BaFe2As2, in which superconductivity
can be induced either by applying pressure5 or by various
chemical substitutions, such as K for Ba (K-Ba122)6 or
Co for Fe (Co-Ba122).7 In the case of Co-Ba122, single
crystals have been grown with compositions that cover
the entire superconducting phase (see Fig. 1).8–10

Two sets of experiments on doped BaFe2As2 appear to
give contradictory information. On the one hand, angle-
resolved photoemission spectroscopy (ARPES) detects a
nodeless, isotropic superconducting gap on all sheets of
the Fermi surface in K-Ba12211 and in optimally-doped
Co-Ba122,12 and tunneling studies in K-Ba122 detect two
full superconducting gaps.13 The magnitude of the gaps
in ARPES is largest on Fermi surfaces where a density-
wave gap develops in the parent compounds.14 This is

taken as evidence for an s± pairing state driven by an-
tiferromagnetic correlations.4,15–17 On the other hand,
the penetration depth in Co-Ba122,18,19 the spin-lattice
relaxation rate in K-Ba122,20 and the in-plane thermal
conductivity in K-Ba12221 and Co-Ba122,22,23 for exam-
ple, are inconsistent with a gap that is large everywhere
on the Fermi surface. Note, however, that the evidence
for deep minima in the gap is particularly clear in the
overdoped regime,20,22,24 a regime which has not so far
been probed by either ARPES or tunneling.

Another possible explanation for the apparent discrep-
ancy between the two sets of experimental results is a
different sensitivity to the c-axis component (kz) of the
quasiparticle k vector, taking into account the three-
dimensional (3D) character of the Fermi surface.7,25–30

Nodes along the c axis were suggested theoretically to
explain the discrepancy between ARPES, penetration
depth and NMR studies.31,32 A variation of the gap mag-
nitude as a function of kz was suggested in experimental
studies of the neutron resonances in optimally-doped Ni-
Ba122.33 It was also invoked to explain the temperature
dependence of the penetration depth in Co-Ba12219 and
its a−c anisotropy in Ni-Ba122.24 Clearly, it has become
important to resolve the 3D structure of the supercon-
ducting gap function in doped BaFe2As2.

Heat transport measured at very low temperatures is
one of the few directional bulk probes of the gap struc-
ture. The existence of a finite residual linear term κ0/T
in the thermal conductivity κ(T ) as T → 0 is unambigu-
ous evidence for the presence of nodes in the gap,34–38

ar
X

iv
:1

00
4.

38
04

v1
  [

co
nd

-m
at

.s
up

r-
co

n]
  2

1 
A

pr
 2

01
0



2

0.00 0.05 0.10 0.15
 0

20

40

60
TN Ts

Tc

OVERDOPEDUNDERDOPED

xs

Ba(Fe1-xCox)2As2

TetraOrtho

x

T
 (

K
)

AF

FIG. 1: Phase diagram of Ba(Fe1−xCox)2As2 as a function of
Co concentration x, showing the orthorhombic phase below Ts
(blue), the antiferromagnetic (AF) phase below TN (green),
and the superconducting phase below Tc (small black dots),
as determined from resistivity, magnetization and heat capac-
ity data,8 and from x-ray9 and neutron10 data. Red circles
mark the Tc value of seven samples measured in the present
study (the c-axis samples labelled A in Table I), indicating
the range of concentrations covered. The vertical dashed line
at x = 0.06 marks the approximate location of the critical
concentration xs where at T = 0 the system goes from or-
thorhombic (Ortho) in the underdoped region (to the left) to
tetragonal (Tetra) in the overdoped region (to the right).9 At
T = 0, the AF phase also ends close to x = 0.06.10

and thus by measuring κ(T ) as a function of direction in
the crystal, one can locate the position of nodes on the
Fermi surface.34,35,39,40 Here, we report measurements of
heat transport in Ba(Fe1−xCox)2As2 for a current direc-
tion both parallel and perpendicular to the c axis of the
tetragonal (or orthorhombic) crystal structure. Our main
finding is a sizable residual linear term κ0/T for a cur-
rent along the c axis, and a negligible one for a current
perpendicular to it. This implies the presence of nodes
in the gap in regions of the Fermi surface that dominate
the c-axis conduction and contribute little to in-plane
conduction. Our study shows that the gap structure of
Co-Ba122 depends on the 3D character of the Fermi sur-
face in a way that varies strongly with x.

II. EXPERIMENTAL

A. Samples

Single crystals of Ba(Fe1−xCox)2As2 were grown from
FeAs:CoAs flux, as described elsewhere.8 The doping
level in the crystals was determined by wavelength dis-
persive electron probe microanalysis, which gave a Co
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FIG. 2: Temperature dependence of the thermal conductiv-
ity κ, plotted as κ/T vs T 2, measured along the c axis in a
Co-Ba122 sample with x = 0.127, using the two-probe tech-
nique, for three values of the applied field: H = 0.0, 0.05 and
0.10 T. At H = 0, the total thermal resistance of sample plus
contacts is dominated by the very high thermal resistance of
the two superconducting tin contacts. At H = 50 mT, tin is
no longer superconducting and the thermal resistance of the
two contacts has become negligible compared to the sample
resistance. In this case, extrapolation of κ/T to T=0 gives us
almost exactly the residual linear term in the sample’s ther-
mal conductivity. Increasing H slightly beyond 50 mT, for
example to 100 mT, leads to no further change in the data.
This shows that measurements in H = 50 mT reveal the in-
trinsic zero-field behavior of the sample. The inset shows the
arrangement of the tin (Sn) contacts and the silver (Ag) wires
on the sample.

concentration, x, roughly 0.7 times the flux load compo-
sition (or nominal content). We studied seven compo-
sitions: underdoped, with x = 0.038, 0.042, and 0.048;
overdoped, with x = 0.074, 0.108, 0.114, and 0.127. In
this Article, ‘underdoped’ and ‘overdoped’ refer to con-
centrations respectively below and above the critical con-
centration xs ' 0.06 at which the system at T = 0 goes
from orthorhombic (below) to tetragonal (above).9 The
Tc value for each composition is shown on the phase di-
agram in Fig. 1. A total of twelve c-axis and nine a-axis
samples were studied; their characteristics are listed in
Tables I and II, respectively. Three of the a-axis samples
were the subject of a previous study (0.074-B, 0.108-A,
and 0.114-B).22

B. Two-probe transport measurements

Thermal conductivity was measured in a standard one-
heater-two-thermometer technique.42 The magnetic field
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TABLE I: Properties of the twelve c-axis samples of Co-Ba122
used in this study. x is the Co concentration measured by
wavelength dispersive microprobe analysis. The supercon-
ducting transition temperature Tc is the temperature at which
the resistivity goes to zero. The values of the upper critical
field Hc2 needed to suppress superconductivity in Co-Ba122
at T → 0 are taken from Refs. 8 and 41. (Hc2(T ) is defined as
the end, or ‘offset’, of the superconducting drop in ρ(T ) vs H).
The residual resistivity ρc0 is obtained by a smooth extrapo-
lation of the ρc(T ) data to T = 0, as shown in Fig. 3. The
normal-state residual linear term in the thermal conductivity,
κcN/T , is obtained from the Wiedemann-Franz law applied
to ρc0 (see text). The zero-field residual linear term, κc0/T ,
is obtained by extrapolating to T = 0 the zero-field thermal
conductivity κc with a linear fit to κc/T vs T 2, as shown in
Fig. 5. κc0/T is also expressed as a fraction of the normal-
state κcN/T , denoted κ0/κN ≡ (κ0/T )/(κN/T ).

x Sample Tc Hc2 ρc0 κcN/T κc0/T κ0/κN

(K) (T) (µΩ cm) (µW/K2 cm)

0.038 A 9.7 30 1935 12.7 6.1 0.48
0.042 A 14.4 40 1980 12.4 2.3 0.19
0.042 B 13.7 40 2115 11.6 2.9 0.25
0.048 A 17.2 45 2535 9.7 0.6 0.06
0.048 B 17.2 45 3045 8.0 0.8 0.10
0.074 A 22.9 60 1030 23.8 0.9 0.04
0.074 B 24.1 60 1140 21.5 0.2 0.01
0.108 A 15.2 30 1560 15.7 2.3 0.15
0.108 B 14.6 30 1770 13.8 1.6 0.12
0.114 A 11.0 20 1415 17.3 3.8 0.22
0.127 A 8.4 15 1500 16.3 5.6 0.34
0.127 B 9.3 15 1130 21.7 6.8 0.31

H was applied along the [001] or c-axis direction of the
crystal structure, which is tetragonal for overdoped sam-
ples and orthorhombic for underdoped samples at low
temperatures. Data were taken on warming after having
cooled in a constant field applied above Tc to ensure a
homogeneous field distribution.

It is conventional to measure electrical and thermal
resistance in a four-probe configuration to avoid the con-
tribution of contact resistances. This is what was done
for data taken with a current in the basal plane (J || a,
in the notation appropriate for the tetragonal phase), as
described elsewhere.21,22 For a current along the c axis
(J || c), however, the four-probe technique is difficult be-
cause of the strong tendency of iron-arsenide crystals to
exfoliation, which makes it difficult to cut samples thick
enough in the c direction to attach four contacts.29,30

Consequently, c-axis transport was measured using a two-
probe technique, which is valid provided contact resis-
tances are much smaller than the sample resistance.

Contacts to the c-axis samples were made using silver
wires (of 50 µm diameter), soldered to the top and bot-
tom surfaces of the sample with ultrapure tin (see inset
of Fig. 2). The contact making and properties are de-
scribed in detail in Ref. 43. In brief, these contacts are
characterized by a surface area resistivity in the nΩ cm2

range, which, for a typical sample size, yields a contact
resistance below 10 µΩ. This is negligible compared to

TABLE II: Properties of the nine a-axis samples of Co-Ba122
used in this study. x, Tc, Hc2 and κ0/κN are defined in Table I.
The residual resistivity ρa0 is obtained by a smooth extrap-
olation of the ρa(T ) data to T = 0, as shown in Fig. 4. The
normal-state residual linear term in the thermal conductivity,
κaN/T , is obtained from the Wiedemann-Franz law applied
to ρa0. The zero-field residual linear term, κa0/T , is obtained
by extrapolating to T = 0 the zero-field thermal conductiv-
ity κa with a power-law fit to κa/T (see text), as shown in
Fig. 7. Note that the magnitude of κa0/T , whether positive
or negative, is in all cases lower than the uncertainty in the
extrapolation (see Fig. 9).

x Sample Tc Hc2 ρa0 κaN/T κa0/T κ0/κN

(K) (T) (µΩ cm) (µW/K2 cm)

0.042 A 13.0 40 200 123 1 0.01
0.042 B 14.2 40 235 104 0 0
0.048 A 16.7 45 150 163 2 0.01
0.074 A 22.2 60 62 395 -1 0
0.074 B 22.2 60 82 299 3 0.01
0.108 A 14.8 30 59 415 -1 0
0.114 A 10.8 20 59 415 -9 -0.02
0.114 B 10.2 20 56 438 -13 -0.03
0.127 A 8.2 15 48 510 17 0.03

a typical sample resistance in the normal state, of the
order of 10 mΩ.

Because tin is a superconductor, the thermal resistance
of the contacts at very low temperature is large. We
therefore have to apply a small magnetic field to sup-
press the superconductivity of tin and make it a normal
metal, with the very low electrical and thermal resistance
mentioned above. A field of 50 mT is sufficient to do this.
In Fig. 2, we compare data obtained with H = 0.00, 0.05
and 0.10 T. The effect of switching off the contact resis-
tance with the field is clear, and once tin has gone normal,
the data is independent of a further small increase in H.
We therefore regard the data taken at H = 0.05 T as
representative of the zero-field state of the sample.

C. Electrical resistivity

In Fig. 3, we show the temperature dependence of the
electrical resistivity ρc(T ) of our c-axis samples, mea-
sured in a two-probe configuration. In all samples, the
resistivity follows qualitatively the temperature depen-
dence reported previously.29 Data for the a-axis samples
are shown in Fig. 4. A smooth extrapolation of ρ(T ) to
T = 0 yields the residual resistivity ρ0 listed in Table I
for c-axis samples and in Table II for a-axis samples. The
uncertainty associated with the extrapolation of ρ(T ) to
T = 0 is approximately ± 5 %. Due to the uncertainty
in measuring the geometric factor, the absolute value of
the resistivity has an error bar of approximately ± 20 %
for a-axis samples and a factor of 2 uncertainty for c-axis
samples.29–31 The higher ρ0 values in the underdoped
regime are due to a reconstruction of the Fermi surface
in the antiferromagnetic phase. The residual resistivity
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FIG. 3: Temperature dependence of the c-axis resistivity
ρc(T ) for the twelve c-axis crystals of Ba(Fe1−xCox)2As2
studied here, with Co concentrations x as indicated. Top and
bottom panels show underdoped and overdoped samples, re-
spectively. Circles and triangles of the same color correspond
to two different crystals at the same doping, respectively la-
belled A and B (see Table I). The lines show how the data is
extrapolated to T = 0, to determine the value of the residual
resistivity ρc0, given in Table I.

ρ0 is used to determine the normal-state thermal conduc-
tivity κN/T in the T = 0 limit via the Wiedemann-Franz
law, κN/T = L0/ρ0, where L0 = 2.45 × 10−8 W Ω / K2.
Because the same contacts are used for electrical and
thermal measurements, the relative geometric-factor un-
certainty between the measured κ and this electrically-
determined κN is minimal.

III. RESULTS

A. Heat transport in the c direction

The thermal conductivity of solids is the sum of elec-
tronic and phononic contributions: κ = κe + κp. In the
T = 0 limit, the electronic conductivity is linear in tem-
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overdoped samples, respectively. Circles and triangles of the
same color correspond to two different crystals at the same
doping, respectively labelled A and B (see Table II). The lines
show how the data is extrapolated to T = 0, to determine the
value of the residual resistivity ρa0, given in Table II.

perature: κe ∝ T . In practice, the way to extract κe is
to extrapolate κ/T to T = 0, and thus obtain the purely
electronic residual linear term, κ0/T .39,42,44 If one can
neglect electron-phonon scattering, as one usually can
deep in the superconducting state, then the mean free
path of phonons as T → 0 is controlled by the sample
boundaries. If those boundaries are rough, the scatter-
ing is diffuse and the mean free path is constant, such
that the phonon conductivity κp ∝ T 3. (Phonons can
also be scattered by twin boundaries and grain bound-
aries.) If the sample boundaries are smooth, specular re-
flection yields a temperature-dependent mean free path,
and κp ∝ Tα, typically with 2 < α < 3.42,45

In Fig. 5, we show the thermal conductivity κc of our
c-axis samples, plotted as κc/T vs T 2, for magnetic fields
from H = 0.05 to 15 T. Below T ' 0.15 K, the curves
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FIG. 5: Temperature dependence of the c-axis thermal
conductivity κc, plotted as κc/T vs T 2, for six samples of
Ba(Fe1−xCox)2As2, with x as indicated, in a magnetic field
H = 0.05, 4, and 15 T (data taken at other fields are not
shown for clarity). These are six of the seven samples la-
belled A in Table I. The lines are a linear fit to the data
below T 2 = 0.015 K2, used to extract the residual linear term
κc0/T as the extrapolation of κc/T to T = 0. The values of
κc0/T are listed in Table I for H = 0, and plotted vs H in
Fig. 6, for all twelve c-axis samples. Solid black squares on
the T = 0 axis (dashed line) give the residual linear term in
the normal-state thermal conductivity, κcN/T , obtained from
the residual resistivity ρc0 of the sample via the Wiedemann-
Franz law (see Table I).

are linear, consistent with diffuse phonon scattering on
the sample boundaries of our c-axis samples, which are
indeed characterized by rough side surfaces. We obtain
κe/T ≡ κ0/T by extrapolating κ/T to T = 0 using a
linear fit below T 2 = 0.015 K2. The error bar on this
extrapolation is approximately ± 0.5 µW/K2 cm, for all
c-axis samples. The value of κc0/T thus obtained is plot-
ted as a function of field H in Fig. 6, for all twelve c-axis
samples. For five concentrations, we have a pair of crys-
tals with nominally the same Co concentration. As can
be seen, the two curves in each pair are in good agreement
with each other, well within the uncertainty in the geo-
metric factor. The zero-field values are listed in Table I.
They range from κc0/T < 1 µW/K2 cm at x = 0.048 and
0.074 to κc0/T ' 6 µW/K2 cm at x = 0.038 and 0.127.

The normal-state residual linear term κN/T was es-
timated using the values of ρ0 through application of

H (T)
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compositions are shown on the left, overdoped compositions
on the right. For five concentrations, two different crystals
with nominally the same x value, labelled A (circles) and B
(triangles), were measured (see Table I).

the Wiedemann-Franz law. The value of κN/T is shown
as a solid black square on the y axis of Fig. 5. For
the most heavily overdoped samples, with x = 0.127,
a magnetic field of 15 T is sufficient to reach the nor-
mal state, where κ0/T saturates to its normal-state value
κN/T . This allows us to check the Wiedemann-Franz
law. For sample A, κc0/T = 16.0 ± 0.5 µW/K2 cm at
H = 15 T, while κN/T = 16.3 ± 0.8 µW/K2 cm; for
sample B, κc0/T = 20.0 ± 0.5 µW/K2 cm at H = 15 T,
while κN/T = 21.7± 1.1 µW/K2 cm. Within error bars,
associated with extrapolations to get κ0/T and ρ0, the
Wiedemann-Franz law is satisfied in both samples.

B. Heat transport in the a direction

In Fig. 7, we show the thermal conductivity κa for six
of our nine a-axis samples, plotted as κa/T vs T , for
magnetic fields from H = 0 to 15 T. Unlike in the c-
axis samples, the phonon conductivity κp does not obey
κp/T ∝ T 2 as T → 0. Instead, it follows approximately
a power law such that κp/T ∝ Tα−1, with 2.0 < α < 2.5.
These values of α are typical of specular reflection off
smooth mirror-like surfaces.42,45 The cleaved surfaces of
these Co-Ba122 crystals (normal to the c axis) are in-
deed mirror-like. Previous measurements of in-plane heat
transport on K-Ba122,21 Co-Ba122,23 and Ni-Ba12246

have all obtained α < 2.7.
As done previously for other a-axis samples,22 we ob-

tain the residual linear term κa0/T by fitting the data
below T = 0.3 K to a power-law expression, κ/T = a +
bTα−1, where a ≡ κa0/T . The error bar on this extrapo-
lation is approximately in the range± 10−20 µW/K2 cm.
(The uncertainty is an order of magnitude larger than
for κc0/T because the phonon-related slope is an order
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H = 0, 4, and 15 T (data taken at other fields are not shown
for clarity). These are the six samples labelled A in Table II.
The lines are a power-law fit to the data below T = 0.3 K,
namely κ/T = a+bTα−1. The fit is used to extrapolate κa/T
to T = 0 and thus obtain the residual linear term κa0/T . The
power α is in the range from 2 to 2.5. The values of κa0/T are
listed in Table II for H = 0, and plotted vs H in Fig. 8, for
all nine a-axis samples. Solid black squares on the T = 0 axis
give the residual linear term in the normal-state thermal con-
ductivity, κaN/T , obtained from the residual resistivity ρa0 of
the sample via the Wiedemann-Franz law (see Table II).

of magnitude steeper.) As found previously over the con-
centration range 0.048 ≤ x ≤ 0.114,22 we again find
κa0/T ' 0, within error bars, now over a wider range:
0.042 ≤ x ≤ 0.127. This is consistent with a separate
report that κa0/T ' 0 in Co-Ba122 at x = 0.135.23

Upon application of a magnetic field, κa0/T increases,
as displayed in Fig. 8 for all nine a-axis samples. For
three concentrations, we have a pair of a-axis crystals
with nominally the same Co concentration. As can be
seen, the two curves in each pair are in good agreement
with each other, within the ± 20 % uncertainty in the
geometric factor and the error bar on the extrapolations.

IV. DISCUSSION

The results of our study are summarized in Fig. 9,
where the κ0/T values of all 21 samples are plotted vs x,
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right. For three concentrations, two different crystals with
nominally the same x value, labelled A (circles) and B (tri-
angles), were measured (see Table II).

normalized to their respective normal-state value κN/T .

A. Gap nodes

1. Zero magnetic field

Our central finding is the presence of a substantial
residual linear term κ0/T in the thermal conductivity
of Co-Ba122 in zero field, for heat transport along the c
axis. It implies the presence of nodes in the supercon-
ducting gap, such that ∆(k) = 0 for some wavevectors
k on the Fermi surface.34–36,39,47 Because heat conduc-
tion in a given direction is dominated by quasiparticles
with k vectors along that direction,34,35 the fact that
κ0/T is negligible when heat transport is along the a
axis, at all x, implies that the nodes are located in re-
gions of the Fermi surface that contribute strongly to
c-axis conduction but very little to in-plane conduction.
The anisotropy of κ0/T becomes pronounced as x moves
away from the critical doping xs ' 0.06, in either direc-
tion. For x > 0.06, we see that the a/c anisotropy in
κ0/κN is at least a factor 10 (see Fig. 9). Such a large
anisotropy is not expected in a scenario of isotropic pair-
breaking,48 and it confirms that the residual linear term
seen in the c direction is due to nodes.

At the highest doping studied here, x = 0.127,
κ0/κN = 0.34 ± 0.03 for J || c. (This is for sample
A, which has the lowest Tc in the overdoped regime;
see Table I.) This magnitude is typical of superconduc-
tors with a line of nodes in the gap. In the heavy-
fermion superconductor CeIrIn5, with Tc = 0.4 K and
Hc2 ' 0.5 T, κ0/κN ' 0.2.40,49 In the ruthenate super-
conductor Sr2RuO4, with Tc = 1.5 K and Hc2 = 1.5 T,
κ0/κN ' 0.1 − 0.3 (depending on sample purity).38 In
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FIG. 9: Residual linear term κ0/T of Co-Ba122 normalized
by the normal-state value κN/T as a function of Co concen-
tration x, at H = 0 (lower panel) and at H = Hc2/4 (upper
panel). Full blue symbols are for a heat current along the c
axis (J || c; circles for A samples, triangles for B samples in
Table I). Empty red symbols are for a heat current along the
a axis (J || a; circles for A samples, triangles for B samples
in Table II). The white interval between the two vertical grey
bands at x < 0.032 and x > 0.17 is the region of supercon-
ductivity in the phase diagram (Fig. 1). The vertical dashed
line at x = 0.06 marks the approximate location of the critical
doping xs where the structure at T = 0 goes from orthorhom-
bic (below) to tetragonal (above)9 (see Fig. 1). Lines through
the data points are a guide to the eye. Error bars on the
H = 0 data are shown for the A samples (circles).

the overdoped cuprate Tl2Ba2CuO6−δ (Tl-2201), a d-
wave superconductor with Tc = 15 K and Hc2 ' 7 T,
κ0/κN ' 0.35.50 In the latter case, because the or-
der parameter is well-known and the Fermi surface is
very simple (a single 2D cylinder), it was possible to
show that the magnitude of κ0/T agrees quantitatively
with the theoretical BCS expression for the residual lin-
ear term in a d-wave superconductor,44 namely κ0/T =
(k2B/3d)(kFvF/S),35,36,39 where d is the interlayer sep-
aration, kF and vF are the Fermi wavevector and ve-
locity at the node, respectively, and S ≡ δ∆/δk is the
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FIG. 10: Comparison of heat transport by nodal quasipar-
ticles and the jump in heat capacity at the superconducting
transition, in Co-Ba122 as a function of Co concentration x.
Heat transport is measured as the zero-field residual linear
term in the thermal conductivity along the c axis, κc0/T ,
normalized by the corresponding normal-state conductivity
at T → 0, κcN/T , multiplied by Tc. The heat capacity jump
∆C is divided by Tc (from Ref. 51). The vertical dashed line
marks the location of xs. Other lines are a guide to the eye.

slope of the gap at the node. (For a d-wave gap with
∆(k) = ∆0cos(2φ), S = 2∆0.)

If the line of nodes in the gap is imposed by the sym-
metry of the order parameter, as in a d-wave state, then
κ0/T is universal, i.e. independent of the impurity scat-
tering rate Γ0, in the clean limit ~Γ0 << ∆0.35,36 Such
universal transport was demonstrated experimentally for
CeIrIn5,49 Sr2RuO4,38 and the cuprates YBa2Cu3O7

37

and Bi2Sr2CaCu2O8.52 As a fraction of the normal-state
conductivity, one then gets (κ0/T )/(κN/T ) ≡ κ0/κN ∝
~Γ0/S.35 However, if the nodes are not imposed by sym-
metry, but are ‘accidental’, as in an ‘extended-s-wave’
state, they still cause a non-zero residual linear term,
with κ0/T ∝ 1/S, but κ0/T is no longer universal, be-
cause S depends on the scattering rate Γ0.47

In Fig. 9, we see that κc0/κcN exhibits a strik-
ing U-shaped dependence on Co concentration x, with
κc0/κcN → 0 as x → xs. Just above xs, at x = 0.074,
κc0/T = 0.2 ± 0.5 µW/K2 cm. (This is for sample B,
which is closest to xs, as it has the highest Tc; see Ta-
ble I.) This is equal to zero within error bars, indicating
that there are no nodes in the gap at this concentration,
as also inferred from the field dependence (see below). If
the nodes can be removed simply by changing x, then
these nodes must be accidental, not imposed by symme-
try.

Given that the change in κ0/κN with x on the over-
doped side is due to a change in κ0/T and not a change
in κN/T (since ρ0 is independent of x, within error bars),
we attribute the dramatic rise in κ0/κN from x = 0.074
to x = 0.127 to a decrease of the slope S with increas-
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ing x. Part of this decrease must be due to a drop in
the overall strength of superconductivity, as measured
by the decreasing Tc. We can factor out that effect by
multiplying κ0/κN by Tc, as shown in Fig. 10. We see
that κ0/κN×Tc vs x is far from constant, as it would be if
the decrease of ∆(k) vs x was uniform, independent of k.
In a d-wave superconductor, for example, S would typi-
cally scale with the gap maximum ∆0, which itself would
scale with Tc, giving a constant product κ0/κN×Tc (for a
constant Γ0). By contrast, in Co-Ba122 the slope of the
gap at the nodes decreases faster than that part of the
gap structure which controls Tc. In other words, ∆(k)
must be acquiring a stronger and stronger k dependence,
or modulation, with increasing x.

In the underdoped regime, for samples with x = 0.048
and lower, the metal is antiferromagnetic10 and its Fermi
surface is reconstructed by the antiferromagnetic order.
Nevertheless, a residual linear term κc0/T is still observed
at H = 0 (see Fig. 9). At x = 0.038, it is even larger than
at x = 0.127, namely κ0/κN = 0.48± 0.04 (see Table I).
This implies that nodes are present in the superconduct-
ing gap inside the region of co-existing antiferromagnetic
order. The fact that κ0/T is again strongly anisotropic
(see Fig. 9) means that those nodes are still located in
regions of the Fermi surface that contribute strongly to c-
axis conduction and little to a-axis conduction. The fact
that the nodes survive the Fermi-surface reconstruction is
consistent with their location in regions with strong 3D
character, since the spin-density wave gaps the nested
portions of the Fermi surface, which are typically those
with strong 2D character. (It should be emphasized that
the mechanisms responsible for the drop in Tc and the
rise in κ0/κN are likely to be different above and below
optimal doping.)

2. Field dependence

The effect of a magnetic field on κ0/T reveals how easy
it is to excite quasiparticles at T = 0.39,47,53 For a gap
with nodes, the rise in κ0/T with H is very fast, because
delocalized quasiparticles exist outside the vortices,53 as
shown for the d-wave superconductor Tl-2201 in Fig. 11.
For a full gap without nodes or deep minima, such as
in the s-wave superconductor Nb, the rise in κ0/T vs H
is exponentially slow (see Fig. 11), because it relies on
tunneling between quasiparticle states localized on ad-
jacent vortices. For Co-Ba122 at x = 0.127, κc0/κN is
seen to track the d-wave data all the way from H = 0 to
H = Hc2. This nicely confirms the presence of nodes in
the gap structure of overdoped Co-Ba122 that dominate
the transport along the c axis.

By contrast, at x = 0.074, the initial rise in κc0/T vs
H has the positive (upwards) curvature typical of a node-
less gap, for both samples A and B (see Fig. 6). The rise
at low H is faster than in a simple s-wave superconduc-
tor like Nb (Fig. 11), either because of a k-dependence
of the gap or because of a multi-band variation of the
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FIG. 11: Bottom panel: Residual linear term κ0/T of Co-
Ba122 normalized by the normal-state value κN/T as a func-
tion of magnetic field H, plotted as (κ0/T )/(κN/T ) ≡ κ0/κN

vs H/Hc2 for three representative Co concentrations, as in-
dicated: underdoped (x = 0.042; red), slightly overdoped
(x = 0.074; black), and strongly overdoped (x = 0.127; blue).
κN/T is obtained from the Wiedemann-Franz law (see text
and Tables I and II), except for the samples with x = 0.127
where we use the value of κ0/T measured at H = 15 T, since
Hc2 = 15 T at that concentration. Full circles are for a heat
current along the c axis (J || c; data from three A samples -
see Table I). Empty circles are for a heat current along the a
axis (J || a; data from three A samples - see Table II). The
vertical dashed line marks H = Hc2/4; the value of κ0/κN at
Hc2/4 is plotted in the top panel of Fig. 9, for all x. We also
reproduce corresponding data for the d-wave superconductor
Tl-2201 (from Ref. 50), the isotropic s-wave superconductor
Nb, and the multi-band s-wave superconductor NbSe2 (from
Ref. 54). Top panel: Anisotropy of the normalized residual
linear term κ0/κN at x = 0.127. The red dashed line at
Hc2/10 marks roughly the field beyond which κ0/κN becomes
isotropic.

gap amplitude, or both. A multi-band variation is what
causes the fast initial rise in κ0/T vs H (with positive
curvature) in NbSe2

54 (see Fig. 11). This H dependence
strongly suggests that there are no nodes in the gap of
Co-Ba122 at x = 0.074, as inferred above from the neg-
ligible value of κa0/T .
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B. Gap minima

We saw that nodes in the gap have two general and re-
lated signatures in the thermal conductivity:39 1) a finite
residual linear term κ0/T in zero field, and 2) a fast initial
rise in κ0/T with H. Both signatures are clearly observed
in Co-Ba122 at x = 0.127 for J || c. For J || a, however,
the situation is quite different. Indeed, κa0/T is negligi-
ble at H = 0, for all x, as also found in previous measure-
ments of κa on underdoped K-Ba122,21 optimally-doped
Ni-Ba122,46 and overdoped Co-Ba122.23

Consequently, the fast initial rise in κ0/T with H for
J || a, seen in Fig. 11, is not due to nodes but rather
to the presence of deep minima in the gap, in regions
of the Fermi surface that contribute significantly to in-
plane conduction, as previously reported.22 In the top
panel of Fig. 9, we show the normalized residual linear
term κ0/κN measured at H = Hc2/4. We see that in
the overdoped regime the κ0/κN values are the same
for both current directions, at all x. In other words,
whereas κ0/κN is very anisotropic at H = 0, it is essen-
tially isotropic at H > Hc2/10, as shown for x = 0.127 in
the top panel of Fig. 11. But quasiparticle transport for
J || c is due to nodal excitations, whereas quasiparticle
transport for J || a comes from field-induced excitations
across a minimum gap. In a single-band model, say with
a single ellipsoidal Fermi surface, this contrast between
zero-field anisotropy and finite-field isotropy can only be
described by invoking two unrelated features in the gap
structure ∆(k): nodes along the c axis and deep minima
in the basal plane. However, the fact that κ0/κN remains
isotropic at all x (for H = Hc2/4) strongly suggests that
nodes and minima are in fact intimately related. We
therefore propose that they both come from the same
tendency of the gap function ∆(k) to develop a strong
modulation as a function of k, which causes a deep mini-
mum on one Fermi surface and an even deeper minimum
on another Fermi surface, where the gap would actually
go to (or through) zero. In other words, instead of in-
voking two unrelated features of the gap structure on a
single Fermi surface, we invoke a single property of the
gap structure which leads to two related manifestations
on separate Fermi surfaces.

C. Two simple models for the gap structure

For the purpose of illustration, we consider a simplified
two-band model for the Fermi surface, whereby one sur-
face has strong 3D character and the other has quasi-2D
character, as sketched in Fig. 12. The 3D Fermi surface
can either be open along the c axis, as drawn in Fig. 12
and suggested by some ARPES data,25 or closed, as sug-
gested by some band structure calculations.58 The 3D
Fermi surface is responsible for most of the c-axis conduc-
tion and the 2D surface for most of the a-axis conduction
(recall that in the T = 0 limit κaN/κcN = ρcN/ρaN ' 20).
Note that in reality the Fermi surface of Co-Ba122 con-

tains at least four separate sheets;32,58 our model requires
that at least one of these has strong 3D character and it
treats all others in terms of a single Fermi surface, the
second quasi-2D sheet. We then propose that the gap
∆(k) varies strongly as a function of k, on both Fermi
surface sheets. There are two basic scenarios: a gap mod-
ulation as a function of kz, illustrated in Fig. 12, or a gap
modulation as a function of the azimuthal angle φ in the
basal plane, illustrated in Fig. 13. The strong modula-
tion extends to negative values on the 3D Fermi surface,
thereby producing nodes where ∆(k) = 0, whereas it
only produces a deep minimum (where ∆ = ∆min) on
the 2D Fermi surface (at least in the range of concentra-
tions covered here). In the first scenario (Fig. 12), the
lines of nodes are horizontal circular loops in a plane nor-
mal to the c axis; in the second scenario (Fig. 13), they
are vertical lines along the c axis.

Both versions of the model explain the isotropy at
Hc2/4 and the anisotropy at H = 0. The isotropy of
κ0/κN follows fundamentally from having a similar k
modulation of the gap on both Fermi surfaces. When
the field is large enough to excite quasiparticles across
the minimum gap on the 2D Fermi surface, quasiparti-
cle transport from both Fermi surfaces will be similar,
explaining the rapid and isotropic rise in κ0/T with H.
By contrast, at H = 0 no quasiparticles are excited on
the 2D Fermi surface at T = 0 (since kBT << ∆min),
whereas nodal quasiparticles are always present on the
3D surface. This explains the large anisotropy of κ0/κN
at H = 0. Note that this anisotropy is not governed
by the anisotropy of the gap itself, i.e. by the direction
of the gap modulation, but rather by the fact that the
nodes lie on the 3D Fermi surface. (Whether horizontal
or vertical line nodes are more consistent with our data
depends on details of the real Fermi surface of Co-Ba122.)
The nodal quasiparticles on the 3D sheet must also con-
tribute to a-axis conduction. Assuming that for the 3D
Fermi surface κa0/T ' κc0/T at H = 0, we should detect
a residual linear term κa0/T ' 6 µW/K2 cm in the a-
axis sample with x = 0.127, for example. This is indeed
consistent, within error bars, with the value we extrap-
olate for the a-axis data at x = 0.127 (Fig. 7), namely
κa0/T = 17 ± 20 µW/K2 cm (Table II).

In both versions of our model for the gap structure,
the U-shaped x dependence of κ0/κN is attributed to an
increase in the modulation of the gap as x moves away
from xs, as illustrated in Figs. 12 and 13. The fact that
the U-shaped curves in Fig. 9 have their minimum where
the (inverted U-shaped) Tc vs x curve has its maximum
points to a reverse correlation between Tc and gap mod-
ulation. Modulation is a sign of weakness. The presence
of nodes in the gap may then be an indicator that pairing
conditions are less than optimal.

It is possible that at high enough x in the overdoped
regime ∆min, the minimum value of the gap on the quasi-
2D Fermi surface, goes to zero, so that nodes appear on
that Fermi surface as well. This would immediately cause
κa0/T to become sizable. It is conceivable that the large
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FIG. 12: First model for the gap structure. Simplified two-
band model of the Fermi surface of Co-Ba122 (blue solid line),
shown in the a− c plane, with kz || c in the vertical direction.
Although in reality the Fermi surface of Co-Ba122 consists of
at least four sheets, in our model we reduce it to two sheets: a
sheet with strong 3D character (FS # 1; top left) and a sheet
with quasi-2D character (FS #2; top right). The supercon-
ducting gap ∆(k) on both Fermi surfaces (red dashed line)
varies strongly as a function of kz, as shown on the bottom
for three representative concentrations x from xs upwards.
On the 3D Fermi surface (#1), the gap modulation is such
that it extends to negative values, producing nodes (black
circles) at certain points. On the 2D Fermi surface (#2), the
gap modulation is strong enough to cause a deep minimum
(where ∆ = ∆min), but not nodes. At x = xs, the gap minima
are shallow and there are no nodes on either Fermi surface.
With increasing x (decreasing Tc), the modulation increases,
the minima deepen and the nodes appear. A further increase
in x (beyond the maximal concentration in this study) could
eventually also yield nodes on FS #2.

value of κa0/T measured in undoped KFe2As2,55 which
can be viewed as the strong doping limit of K-Ba122, is
the result of a gap modulation so strong that it goes to
(through) zero on all Fermi surfaces.

A pronounced modulation of ∆(k) should manifest it-
self in a number of physical properties. For example, in
an s-wave superconductor, a variation of the gap magni-
tude over the Fermi surface, whether from band to band
as in MgB2,56 or from k dependence (anisotropy) as in
Zn,57 leads to a suppressed ratio of specific heat jump
∆C at the transition to Tc. The pronounced gap mod-
ulation and anisotropy revealed by the thermal conduc-
tivity could therefore account for the dramatic variation
of ∆C/Tc measured in Co-Ba122 vs x,51 reproduced in
Fig. 10. ∆C/Tc is seen to be maximal where κ0/κN is

∆(φ) ∆(φ)

φ φ
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kx

ky
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ky
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ẑ ‖ ĉ
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0 π/20

FIG. 13: Second model for the gap structure. Same as in
Fig. 12, except that the modulation of the superconducting
gap ∆(k) is now a function of the azimuthal angle φ in the
basal plane.

minimal, i.e. where the gap modulation is weakest, and
it drops just as rapidly with a change in x as κ0/κN rises.

D. Theoretical calculations

The two-band picture suggested by our thermal con-
ductivity data is reminiscent of the proximity scenario
proposed for the three-band quasi-2D p-wave supercon-
ductor Sr2RuO4,59 where superconductivity originates
on one band, the most 2D one, and is induced by prox-
imity on the other two bands. This k-space promixity
effect is such that a kz modulation of the induced gap
produces horizontal line nodes on the latter two Fermi
surfaces,59 in analogy with the horizontal-line scenario of
Fig. 12. A proximity scenario of this sort was in fact pro-
posed for the pnictides,31 predicting c-axis nodes in the
superconducting gap. The effect on the superconducting
gap structure of including the kz dispersion of the Fermi
surface in BaFe2As2 was recently calculated within a
spin-fluctuation pairing mechanism on a 3D multi-orbital
Fermi surface.32 A strong modulation of the gap ∆(k) as
a function of both kz and φ is obtained which can indeed,
for some parameters, lead to accidental nodes.

The thermal conductivity of pnictides was calculated
in a 2D two-band model for the case of an extended-s-
wave gap (of A1g symmetry).47 These calculations show
that the presence of deep minima in the gap, in this case
as a function of φ, can account for the rapid initial rise
observed in κa0/T vs H, starting from κa0/T = 0 at
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H = 0. It seems clear that calculations for a gap whose
deep minima occur instead as a function of kz would yield
similar results. It will be interesting to see what calcu-
lations of the thermal conductivity give when applied to
the 3D model of Ref. 32, or indeed to the simple two-band
models proposed here (in Figs. 12 and 13).

V. CONCLUSIONS

In summary, our measurements of the thermal
conductivity in the iron-arsenide superconductor
Ba(Fe1−xCox)2As2 show unambiguously that the gap
∆(k) has nodes. These nodes are present in both the
overdoped and the underdoped regions of the phase
diagram, implying that they survive the Fermi-surface
reconstruction provoked by the antiferromagnetic order
in the underdoped region. The nodes are located in
regions of the Fermi surface that dominate c-axis conduc-
tion and contribute very little to in-plane conductivity.
The fact that the strongly anisotropic quasiparticle
transport at H = 0 becomes isotropic in a magnetic field
H = Hc2/4 shows that there must be a deep minimum
in the gap in regions of the Fermi surface that dominate
in-plane transport. These two features - nodes on 3D
regions and minima on 2D regions of the Fermi surface
- point to a strong modulation of the gap as a function
of k. This modulation of ∆(k) would be present on all
Fermi surfaces, but be most pronounced on that surface
with strongest kz dispersion, where it has nodes. This
suggests a close relation between the 3D character of the
Fermi surface and gap modulation.

The anisotropy of κ shows a strong evolution with Co
concentration x. At optimal doping, where Tc is maxi-
mal, there are no nodes and κ0/T has the anisotropy of
the normal state. With increasing x, nodes appear and
κ0/T acquires a strong anisotropy. We attribute this to
an increase in the gap modulation with x, which may
explain the strong decrease in the specific heat jump at
Tc

51 and the change in the power-law temperature depen-

dence of the penetration depth.18,19 The fact that nodes
are located in regions that dominate c-axis conduction is
consistent with the fact that the penetration depth along
the c axis has a linear temperature dependence.24

Horizontal line nodes in Co-Ba122, which would be
the result of a strong modulation of the gap along kz
rather than a strong in-plane angular dependence, would
reconcile the isotropic azimuthal angular dependence of
the gap seen by ARPES with the evidence of nodes or
minima from thermal conductivity, NMR relaxation rate
and penetration depth measurements in Co-Ba122 and
other iron-based superconductors. A kz modulation of
∆(k) should be detectable by ARPES, especially in the
overdoped regime where it would be strongest.

Because the nodes go away by tuning x towards opti-
mal doping, we infer that they are ‘accidental’, i.e. not
imposed by symmetry, and so consistent a priori with
any superconducting order parameter, including the s±
state.15–17 Although accidental nodes are not a direct
signature of the symmetry, the strong modulation of the
gap nevertheless reflects an underlying k dependence of
the pairing interaction, and as such the 3D character of
the gap function ∆(k) is an important element in under-
standing what controls Tc in this family of superconduc-
tors.
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